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LE'ITER TO THE EDITOR 

Escape exponent for transient chaos and chaotic scattering in 
non-hyperbolic Hamiltonian systems 

Arkady S Pikovskyt 
Physics Department, Bergische Universitit Wuppeml Gaupstrape 20, D-5600 Wuppenal 1,  
Federal Republic of Germany 

Received 2 December 1991 

A b t n d .  It is shown that in non-hyperbolic Hamiltonian systems where correlations decay 
as a power law, transient chaos and chaotic scattering demonstrate different power laws. 
Numerical evidence of this effect for the stadium billiard is presented. 

Problems of transient chaos and of chaotic scattering are very similar [l]. In both 
cases a chaotic repeller exists in phase space, and trajectories eventually escape from 
its vicinity. The difference between the two problems is in the initial conditions. In 
the case of transient chaos one usually assumes that there exists a system with 
statistically stationary chaotic behaviour (strange attractor for dissipative systems, 
invariant chaotic set in the Hamiltonian case), and then trajectories are allowed to 
escape (for example, by changing parameters). In the case of chaotic scattering one 
usually has a set of particles coming from infinity, and these particles escape the region 
of irregular behaviour after some time. The difference, thus, is in the initial distribution: 
for transient chaos particles are initially distributed according to invariant measure on 
the chaotic set, while for scattering the initial distribution is concentrated on some 
subsets in the phase space disjoint from the chaotic set. As an example, consider Sinai's 
billiard system. If we make a hole in the wall of the billiard and consider particles 
coming through the hole and leaving the billiard after a number of collisions, we have 
the scattering problem. Transient chaos corresponds to a situation in which initially 
the particles move inside the closed billiard, and then the hole is opened. 

In the case of a hyperbolic repeller the number of non-escaped particles decays 
exponentially in time both for transient chaos [2,3] and for chaotic scattering [5]. 
However, many dynamical systems do not exhibit strong hyperbolic properties. In 
particular, Hamiltonian systems with divided phase space, where regions of chaotic 
and regular motions coexist, demonstrate intermittent behaviour. Trajectories may be 
held up for a very long time near the border with regular regions, where mixing is 
very weak. This results in power-law tails of the correlation function [6-11]. In these 
systems we expect the number of non-escaped particles to decay as a power law [12]: 

N ( t )  - 1-". (1) 

Here N is the number of particles which escape after time 1. The main characteristics 
of such non-hyperbolic Hamiltonian systems is the exponent a. The aim of this letter 
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is to show that in these systems the exponents for transient chaos a, and for chaotic 
scattering a. are related by a, = a. - 1. 

Qualitatively, the difference between escape indices for the two cases results from 
the following. Trajectories stay for a long time near the border of chaos. Because the 
invariant measure for HamiItonian systems is the Lebesgue measure, the probability 
for a trajectory inside the chaotic region to come close to the border is very small. 
Thus, if the initial distribution is inside the chaotic region, the case of chaotic scattering, 

is non-zero near the boundary of chaos, the case of transient chaos, a larger number 
of trajectories are held up and the exponent is smaller. 

Quantitatively, we derive a using the Chirikov-Shepelyansky model [6 ] .  In this 
model motion along the border between chaotic and regular regions is assumed to be 
highly chaotic, while motion along the transverse coordinate x is diffusive. For the 
probability distribution they proposed the following phenomenological model (see 
also [IO]) 

an!y I smz!! nllmber nftrzjectries zre he!d "p fer z !ong h e .  !f!hP hitiz! distri;.b!!tia!! 

JW(x,  t )  J JW(x,  t )  
= - ( x p  J x  Jx ) p > 2 .  

J f  

The diffusion rate here is proportional to x p  and vanishes at the border of chaos where 
x = 0. One can easily see that the homogeneous solution W = constant satisfies (2). 
But in the problems of transient chaos and chaotic scattering it is natural to complement 
(2) with the boundary condition 

W ( L , t ) = O  

which describes escape of particles at x = L. We cannot solve (2) exactly with this 
boundary condition. Therefore we consider (2) in a semi-infinite domain 0 < x < cc 
and assume that the particles outside the interval O < x < L  'effectively escape'. This 
approximation is good because the diffusion rate is large for large x and the probability 
for particles to come back from large to small x is very small. Thus the quantity of 
interest is the total number N( 1 )  of particles in the interval 0 < x < L: 

N ( / )  = I W ( x ,  /) dx. 
d o  

(3) 

We use the known Green function for (2) [IO]: 

which satisfies the initial condition G(x,O, g )  = S(x-6). Here 
., - ($2 - , , - l t - 1 / 2 x - ( P - 2 ) / 2  ~ ~ ( R  . - , ) -1 i -v2s - (P -2 ) /2  
, - ,v  - I  .I ~ ,P, - I  

p = ( p  - I ) /@ -2) and 1, is the modified Bessel function. 
For the problem of chaotic scattering we are interested in an initial distribution 

outside the border of chaos. Therefore it is sufficient to consider a localized initial 
distribution of the form W ( x ,  0 )  = S(x - g ) ,  in which case the solution W ( x ,  t )  is given 
by (4). Substituting (4) in (3) and changing the variable of integration from x to y ,  
we obtain 
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Because q - fP’2+ 0 for f+m,  we can approximate 1,(2qy) for small qy as 1,(2qy)= 
(TJY)’. Substituting this in ( 5 )  we obtain 

(6) N ( r ) -  t - ( B - l ) / l B - 2 )  

which yields a, = ( B  - l)/(p -2) for the exponent of chaotic scattering. 

W(x, 0 )  = Wn. Then 
For transient chaos we choose a uniform initial distribution in the interval 0 < x < L: 

W(X, 1)’ WO G(x, t , f)  dg 
In‘ 

and (3) is reduced to 

Changing the variables of integration to q and y, we have 

One can easily check using the above relation for &(z) for small z; and also the 
asymptotic I&) -eZ(27rz)-’’’ as z + m, that the double integral converges at both 
limits yielding 

(7) 

Comparing (6) and (7) we obtain that the exponent for transient chaos a,= 1/(B -2) = 
aaaa. - 1. 

The exponents can also be easily estimated for a one-dimensional model of non- 
hyperbolic Hamiltonian systems [ 13,141. The model is a symmetrical one-dimensional 
mapping z wf(2 ) J -z )  = -f(z) with marginally linearly stable fixed points z = + l :  
f ( - l+z)=-l+z+constant  z p  for O<z<< 1. In the numerical simulations presented 
below we use the following implicit expression for f (z )  [14]: 

N ( r )  - t - 1 / ( 8 - 2 )  = t - (B -1 ) / (B -2 )+1  

z =L [l +f(z)]” O < z < ( z p ) - ’  
ZP 

1 
z = f ( Z ) + - [ l - f ( Z ) y  (2p)- ’  < z < 1 (8) 

f ( - z )  = -f(z). 

2P 

The advantage of the model (8) is that it has a uniform invariant probability density 
and thus mimics Hamiltonian systems. 

The problems of scattering and transient chaos may be posed for the system (8) if 
we make a ‘hole’ O <  z, < z < z2< 1 where trajectories escape. Let us estimate the 
exponents for this system. In the problem of transient chaos we start from the uniform 
distribution. The main contribution to N (  f) is trajectories beginning near the marginally 
stable fixed points. It is easy to show that a trajectory that starts at distance 6 from 
the fixed point leaves its vicinity after time -e1-” and thus 

(9) N ( f )  - t ’ / ( ’ - P ) ,  
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In the scattering problem the initial distribution is concentrated inside the interval 
zI < z < z2. Here the main contribution to N ( t )  is from the trajectories that fall in the 
vicinity of the origin and are mapped to the vicinities of the fixed points. The probability 
to fall in the interval [-I, - I + ( ]  is proportional to to and hence 

(10) N (  t )  - t P / ( l - P )  = t t / ( l -P ) - t  

Again we find that the difference between the exponents for transient chaos and chaotic 

We now present numerical evidence for the formula derived in (9) and (10). In 
figure 1 we check (9), (IO) for the one-dimensional model (8). In figure 2 we present 

scaiiennK is equai io i ,  

0 1  2 3 4 !  

1gt 
Figore 1. N versus I far scattering (open circler) and transients (filled circles) in the 
mapping (8) with p = 3 .  Lines have slopes 1.5 and 0.5 in accordance with (9).  (10). The 
logarithms here and in figure 2 are decimal 

lb l  

I 

Figure 1. ( a )  Configuration of the stadium billiard system. ( b )  N versus I for scattering 
(open circles) and transients (filled circles) in the stadium billiard. Lines have slopes I 
and 2. 
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data for transient chaos and chaotic scattering for the Bunimovich stadium billiard 
[15]. It is known that in this billiard correlations decay as a power law [15,16]. The 
role of the ‘border of chaos’ here is played by weakly unstable periodic trajectories 
perpendicular to the parallel walls (see figure 2(a) ) .  We make a hole in the billiard‘s 
wall. In the scattering problem, particles are injected through the hole and the number 
of collisions before their escape was computed. In the transient chaos problem particles 
were initially distributed according to the known invariant density [15]. The exponents 
obtained are in agreement with (6). (7). 

In conclusion, we have shown that in non-hyperbolic Hamiltonian systems 
exponents for the problems of transient chaos and chaotic scattering differ by one. 
This is caused by intermittent behaviour of trajectories which ‘stick‘ near the boundaries 
of chaotic regions. 

The author thanks P Grasrherger, H KAEtZ, T Ti! and L Bunimavkh fclr usef.! 
discussions, R Flash for careful reading of the manuscript and the Alexander von 
Humboldt Stiftung for support. The author also acknowledges hospitality of the 
Institute for Scientific Interchanges (Torino, Italy) where part of this work was per- 
formed during the program ‘Complexity and Evolution’. 
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